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This paper is a study of how external turbulence affects an initially turbulence-free 
region in which there is a mean-velocity gradient dU/dz. Rapid-distortion theory 
shows how external turbulence induces irrotational fluctuations in the sheared region, 
which interact with the shear to produce rotational velocity fluctuations and mean 
Reynolds stresses. These stresses extend into the sheared region over a distance of 
the order of the integral scale L,. Since the actual front between the initial external 
turbulence and the shear flow is a randomly contorted surface, the turbulence of a 
fixed point near the front is intermittent. Intermittency is included in the present 
analysis by a simple statistical model. 

Experiments were done in a wind tunnel with the flow divided by a plate extending 
from upstream to 2 = 0. Above the plate, turbulence was produced by a grid. Below 
the plate a low turbulence shear was produced by wire screens. The wake of the plate 
(z > 0) decayed downstream. 

Turbulent shear stress was observed to grow from zero to significant values in the 
interaction region. The magnitude and extent of the observed stress agrees reasonably 
well with predictions. We conclude that turbulent stresses can be produced by 
irrotational fluctuations in a region of mean shear, and that this effect can be 
estimated using rapid-distortion theory. 

1. Introduction 
An irrotational flow field, such as that associated with a single vortex or multiple 

vortices, can produce additional turbulence and mixing in a nearby region of mean 
shear, such as a boundary layer. Vortex generators which are used to delay separation 
in adverse pressure gradients use this principle (see Lachmann 1961). The mechanism 
involved is conceptually simple : the isolated vortex sketched in figure 1 deflects the 
vortex lines of the nearby shear region so that they can be stretched by the velocity 
gradient and thereby draw energy from the mean motion. As a result, strong 
streamwise vorticity can be created in the shear region by re-orientation of the 
original cross-stream vorticity. Additional mixing occurs, and the new streamwise 
vorticity can repeat the process in nearby regions of mean shear. The original mean 
shear would in general be altered by the interaction, which is nonlinear and 
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FIGURE I .  Conceptual sketch of interaction between an isolated vortex and a nearby region of 
uniform shear: (a) initial effect of an isolated vortex on other vortex lines; (a) subsequent effect 
of shear on a typical vortex line. 

complicated as recent measurements show (Mehta, Shabaka & Bradshaw 1981). If 
the effect of the isolated vortex is weak, however, and the interaction is brief, 
linearized approximations may be used to estimate the effects involved. 

The isolated vortex of figure 1 may be thought of as one element in a three- 
dimensional unsteady field of vorticity representing freestream turbulence near a 
region of mean shear. In this case the irrotational motion associated with the 
turbulence can be estimated, at least in a region far from a boundary of the vorticity 
(Phillips 1955; Bradshaw 1967). One well-known result is that the irrotational 
fluctuation energy decreases as z-*, where z is measured normal to the turbulence 
boundary, assumed to be plane. With the irrotational flow field associated with the 
turbulence known, estimates can be made of its interaction with a nearby region of 
mean shear. Durbin (1978) has previously reported such an extension of Phillips’ 
analysis. He also considered the case where the sheared region is bounded by a plane 
wall; turbulence near a plane boundary was analysed in detail by Hunt & Graham 
(1978). The present analysis is another example of this class of problemsinvolving plane 
boundaries and (stable) parallel shear flows to which RDT can be applied (Goldstein 
1979). 

Here we examine the interaction between a turbulent region of approximately 
constant mean velocity and an adjacent region which is initially non-turbulent, or 
of very low turbulence, but has an approximately constant mean-velocity gradient. 
Rapid-distortion theory is applied to this problem in $2, and an experimental 
examination of the interaction is described in $3. Comparisons and conclusions follow 
in $4. 

2. The application of rapid-distortion theory 
The initial development of turbulence induced in a shear flow by an adjacent 

turbulent region can be analysed by making the approximations of rapid-distortion 
theory. We show how shear-layer turbulence grows in intensity by extracting energy 
from the mean shear and how Reynolds shear stresses are produced in the process. 
Two cases are considered: 

case (i) : a plane turbulent layer bounds a region of uniform shear (figure 2 a )  ; 
case (ii) : a plane turbulent layer bounds a region of non-uniform shear (figure 2 b ) .  

Present interest is in the evolution with time of turbulence in the shear layer. In  case 
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FIQURE 2. Idealized flow fields assumed in the rapid-distortion-theory 
calculations: (a) case (i); (b) case (ii). 

(ii) the analysis is restricted to asymptotically short times, but the behaviour of the 
turbulence above the shear layer is also considered. 

Case (i) 
First consider the field of turbulence induced in a region of uniform shear by a random 
normal velocity at  its boundary z = 0 (see figure 2a) .  In the present experiments the 
shear flow is bounded by the turbulent wake of a splitter plate (see §$3 and 4). The 
velocity at the edge of this wake is supposed known, and the turbulence induced by 
this velocity is calculated. 

In the ' rapid-distortion ' approach the essential assumptions are that the advection 
and straining of vorticity by turbulent velocities is weak compared with that by the 
mean velocity and its local gradients (for which a suflcient condition in this case is 
that u, 4 LdU/dz), and that the time t for the distortion is small compared with 
the Lagrangian timescale Llu, (Hunt 1973). (Townsend (1976) has shown that in 
shear flows the theory agrees with measurements of turbulence correlation function 
even when tdU/dz is as large as 2.) Then the linearized inviscid equations of 
incompressible fluid flow may be used. Let U ( z )  be the mean velocity and u = (u, v, w) 
be the turbulent velocity. 

Taking the curl of the momentum equations and using the fact that d2U/dz2 = 0, 
we obtain 
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where 

Using the continuity equation 

~a a 5 = &+ V(z)-. ax 

au av aw 
ax ay a Z  
-+-+- = 0, 

it follows from taking the curl of ( l a )  that 

D 
-vzw = 0, 
Dt 

Then if the initial flow is irrotational, it follows that for all subsequent time 

v2w = 0. ( 1 4  

The v-component of velocity can be obtained from (1 a(i)) once the solution for w is 
found from (Id), and u can then be obtained from (1 b). 

The effect of the upper turbulent region (figure 2) on the lower shear flow is 
simplified by supposing that w(x, y, z = 0) = A(x, y), where A(x, y) is a known, 
spatially homogeneous random function. (Actually, we are using Taylor's hypothesis 
to remove any time dependence of A: we have adopted locally a frame of reference 
moving a t  the mean velocity at z = 0, which is why the shear flow below z = 0 in 
figure 2 is in the negative x-direction.) The approximation that A(x, y) is homogeneous 
in the x-direction is justified because the wake thickness changes very little in a 
distance typical of the turbulence scale. 

Introducing the 2-dimensional Fourier transforms in the x- and y-directions in 
which the turbulence is homogeneous, 

into (1) simplifies their so1ution.t For the vertical velocity, since & + O  as z+--co, 

where 

If a lower boundary, where zi, = 0, exists, the result (3) can be modified following Hunt 
& Graham (1978) and Durbin (1978). 

A two-dimensional spectrum of the function A  ̂ is assumed for computational 
convenience to have the form : 

where u, and La, are velocity and length scales: 
0 0 -  

a,- 3 R  s_, l&-o dk 
&$ = [{-a, (A(2dkdZ, L ,  = 

t Note the difference between this and the analysis of homogeneous shear flow where three 
dimensional Fourier transforms are used and the wavenumber rn in the z-direction is a function 
of strain and k (Townsend 1976). 



Production of turbulent stress by irrotationul fluctuations 311 

@I2 has been given an axisymmetric form, and it satisfies limK+o I@ = O ( K ~ )  in order 
to be consistent with the constraint limk+oE(k) = O(k4), usually imposed on the 
three-dimensional energy spectrum of homogeneous turbulence. 

- - 

From (3) and (4) 

Since spectra and variances are related by 

it follows from (5) that 

This reproduces Phillips’ (1955) asymptotic result ~ + O ( Z - ~ )  as z+ co. 
The equations (1)  show that within the shear layer the horizontal components of 

velocity are driven entirely by the vertical component. Thus the solution (3), along 
with the condition that initially the velocity is irrotational, completely determines 
4 and 6. The initial condition can be written 

a t  t = 0. From (6) and (8) G(z, t = 0 )  = G(z, t = 0) = @(z).  At subsequent times Z 
and 7 will be modified by effects of the mean shear. 

Solving (1) by introducing Fourier transforms and substituting the result for 4 into 
(6) gives 

e--xLm +2KzKe  {---p--+ k2 
(2 - 2 cos (kz, T ) )  

where T = t dU/dz is non-dimensional time, J ,  is a Bessel function and 

(1  - cos (a  cos 4)) d$ 

= Zag(a)-3+- J1(a) + 2 Jo( a )  ; 
a 

with 

d4. 
1 *1-cos(acos$) 
nJo acos2$ 

g(a) = - 

The function g(a) was analysed by Durbin (1978), who showed that 

g(a) ++a + 0(a3)  (a  + 0), 

g(a)+I+O(a+) (a % 1 )  
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FIGURE 3. Calculated distributions of Reynolds stress near the plane boundary of a turbulent 
field for various strain ratios 2': (a) longitudinal normal stress; (b) shear stress. 

(the latter limit is taken to indicate the trend when a 2 1). From these i t  follows that 

Thus, initially 2 grows like P, and a t  large times it grows linearly with T .  The mean 
shear is the source for this growth of the energy of induced turbulence. It also follows 
from (9) that 2 - 1/z4 as z-f-  00 for all T ;  of course the proportionality here is a 
function of T .  

The full expression (9) has been evaluated numerically and is shown in figure 3 (a). 
The variance of the initial irrotational velocity field is 

This is subsequently amplified by the mean shear. 
The Reynolds stress is found to be 

with g(a) as given above in (11) .  Asymptotically 
- 
uw+-$u2,T as z+O with T = 0 ( 1 ) ,  
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At T = 0, -TZ@ = 0: it grows with time as in figure 3(b) ,  in which numerical 
evaluations of (13) are plotted. 

It is instructive to consider these results in terms of the turbulence kinetic energy 
equation in its linearized form for this problem : 

1 d(u2+w2+w2) - au a 
- = -uw----(pW). 
2 dt aZ aZ 

Equations (12) and (14) and also direct calculation show that pw = 0. This result can 
also be shown by symmetry arguments: since w for z < 0 is independent of dU/dz, 
and since V2p = -2 dU/dzaw/ax, p and pw are proportional to dU/dz. Therefore, 
since pw must be independent of the sign of dU/dz, pw must be zero. However, w ap/ax 
and u applaz do not have reflectional symmetry about x = 0, and therefore are non-zero. 
These pressure-velocity correlations have an important effect on uu) in case (ii). 

Thus (14b) reduces to 

(144 

so the increase in kinetic energy is directly proportional to the Reynolds stress. 
Equations (12) and (14) show that, at large strains, ;;E" >> 2 and that 

I d  
2 dt 
--(u2+w2+w2) = -EGdU/dz, 

dU x -am---. 1 d p  
2 dt dz 
-- 

Case (i i) 
In the theory presented so far, we have neglected any effects above z = 0 of the 
interactions below z = 0. One might expect some irrotational fluctuation in the region 
z > 0, produced by the growth of turbulence below z x 0. These are of some practical 
importance if they can produce a Reynolds stress in z > 0. The following calculation 
enables this aspect of the problem to be explored. For simplicity and because the 
experimental measurements correspond to small-time distortion, we only consider the 
effects at  the beginning of the distortion. 

The vertical velocity of the initial rotational turbulence is now specified at the plane 
z = 0, and the mean velocity gradient is imposed at z < -zl. To ensure a continuous 
matching of the turbulence across z = -zl, the shear increases in an adjustment 
distance 6: for dU/dz we use the form (figure 2b) 

dU/dz = yU'(z), 

u = 0 ( z  2 -zl), 
U' = 1 -e(z+zi)la ( z  < - -Z l ) ,  

(15) I 
so that y is just the value of dU/dz as z- t -  co. 

If the turbulent velocity components are expanded as 

U ( X ,  T) = d0)(x) + Tu(l)(x) + O ( P ) ,  

where T = qt, then h / a T  = u(l)(z) to lowest order, and P ( O )  is the initial velocity as 
given previously in (3) and (8). The pressure must be expanded as P = yp(') + O(T) 
to be consistent with the expansion of u. By the linearized momentum equations dl) 
and p(l) satisfy 

where AL = U ( z ) / y .  
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The most significant result of the analysis is that  when T 4 1 the cospectrum of 
the Reynolds shear stress is given by 

- 
Gzi, = T(&W 80) +,$I) &(O) 

Note that a is positive in the region between z = 0 and z = -zl where the velocity 
gradient starts. 

Analytical expressions for uW can be obtained in the limit of a thin layer between 
the uniform flow and the velocity gradient (as in our experiment). Thus when 
&/La 6 1 

Equation (17) indicates that initially the negative Reynolds shear stress ( - T i @  < 0) 
above the shear region is as large as the positive Reynolds stress in the shear region 
z 6 - zl. These stresses of opposite sign connect continuously across a layer below - z1 
of thickness O(6).  Note that u" and 2 are only perturbed by O(T2) (see (12)), and 
therefore the Reynolds stress increase is the most apparent effect of distortion. 

There is a physical explanation for the results in (17) which should give an 
indication of when this mechanism might be important. Consider the equation for 
production of Reynolds stress - UW in homogeneous turbulent shear flow (dissipation 
and turbulent-diffusion terms neglected) : 

_ _ _ _  

Dt 
ST PV 

The shear-turbulence term ST produces Reynolds stress when the w-component of 
turbulence displaces the vortex lines of the mean flow (cf. figure 1) .  The pressure term 
PV is due to  rotation and distortion of eddies by the mean velocity gradient : analysis 
shows that distortion of eddies produces pressure fluctuations which (because they 
are non-local) cause u and w to become partly in phase with each other. Substitut- 
ing (17b)  for uw in (18) shows that PV = -+ST. This is different from the result 
PV = -2ST given by Townsend (1976) for homogeneous turbulence : the difference 
is because our result is for non-homogeneous turbulence generated by the irrotational 
disturbance. 

Above the shear layer the first term in (18) is zero. However, the pressure fluctua- 
tions extend into the region above -zl giving - D W / D t  = PV = -:ST for the 
second term. This effectively explains the change of the sign of uW in (17) on going 
from z < - (zl+&) to z > -zl: below the interface, ST causes -uw to be positive; 
above the interface PV makes it negative. 

The Reynolds stress in the unsheared region can also be explained as due to 
vorticity waves propagating along the interface between the two regions (Durbin 
1978). Initially the displacement of the interface produces a u-velocity above -zl 
proportional - to wT. The associated Reynolds stress is negative and proportional to 
- w'T. 
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i Grid 
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/ /’ Curved screens - 

X I  
(experiment B) 

- 
The advantages of our short-time analysis are that i t  clarifies these mechanisms, 

and that i t  can be used for more general initial fields of turbulence. However, in 
comparing with experiment we use the finite-time results of case (i). 

3. Experimental arrangements 
Measurements of the interaction between grid turbulence, a turbulent wake and 

an adjacent low turbulent region of uniform shear were made in the DAMTP suction 
tunnel (Britter, Hunt & Mumford 1979). The arrangement is sketched in figure 4; 
the tunnel working section, which is 0.46 m square, is divided in half by a horizontal 
splitter plate 0.61 m long. Above the plate near its leading edge, a uniplanar 
square-mesh grid with mesh size 58 mm and bar width 14 mm produces grid 
turbulence. Below the plate, two &hernative arrangements were used : for the first 
set of experiments, designated A, two normal uniform screens were installed to 
produce a low-intensity stream of uniform velocity and a pressure loss equal to that 
of the grid above the plate. For the second set of experiments (B) two curved screens 
were used as shown in figure 4 to produce a region of approximately uniform shear. 
The two curved screens were identical, their shape being the same as that used by 
Maul1 (1969). All screens consisted of 29 SWG wire (0.345 mm diameter) woven in 
a square mesh with close to one wire per millimetre. 

I n  all experiments, additional plane screens upstream of the splitter plate were used 
to provide approximately equal mean velocities on either side of the splitter plate 
wake. The screens for this purpose had different open-area ratios above and below 
the plate, chosen to  create the required effect. Screen open areas were varied by 
mounting more than one screen together in the same frame andj/or by lightly spraying 
a single screen with paint to increase the effective wire-mesh diameter. Mean velocities 
in the grid turbulence were approximately 7.6 m/s in all cases. Linearized hot-wire 
anemometers were used with both normal and slant wires to measure mean velocities 
and turbulent quantities. Turbulence intensities were low in every position of 
importance ; no longitudinal cooling correction was used in the data reduction. 

4. Experimental results 
I n  the first set of experiments (A) the mean velocity outside the splitter plate wake 

was essentially constant. Profiles a t  four streamwise positions are shown in figure 5 .  
The wake was initially asymmetric because of different boundary layers on the top 

11 FLY 137 
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FIGURE 5. Measured mean velocity profiles for experiment A :  A, z = 12 mm; 
+, 368mm; 0,  750mm; El, 1130mm. 
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FIGURE 8. Measured turbulence intensity for experiment A plotted to examine Phillips' 
hypothesis; symbols as in figure 5. 
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FIGURE 9. Self-similar plot of the longitudinal turbulence intensity measurement of experiment 
A based on scales appropriate to a small-deficit wake; symbols as in figure 5. 

and bottom of the plate, and then developed further asymmetry, because of the 
turbulence on one side but not on the other. Some evidence of screen non-uniformities 
can be seen in the slightly uneven mean velocities below the plate (see Castro 1976). 
Increased velocities can be seen above the plate outside the central wake; these 
decrease as the flow develops and must be due to the particular gridlboundary 
connection chosen, a half-mesh opening a t  each side of the grid, as sketched on the 
abscissae of figure 5.  Longitudinal intensities u' (where the prime denotes the r.m.s. 
value) a t  the four locations are shown in figure 6, and shear stresses -(uw) in 
figure 7 .  

The mean velocities of figure 5 show that the wake has a small defect over most 
of its length. The distributions of turbulence intensity show the expected rapid 
decrease from their values in the grid turbulence above the wake to about 0.5 yo below 
the wake on the other side. The turbulence intensity in the wake was initially very 
large, but approached the surrounding grid turbulence values with distance downwind. 
The shear stress, although somewhat scattered in the grid turbulence region where 
intensities are high, shows the expected wake-like pattern with positive and negative 
maxima separated by a point of zero stress near (but not necessarily a t )  the wake 
centre as defined by the minimum mean-velocity position. The non-zero stress in the 
grid-turbulence region must be associated with the mean-velocity variation there, 
which we have already noted. All stresses decrease in the downstream direction in 
much the same way since measured values of the stress ratios uu)/u'w' and w f / u f  at 
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FIGURE 10. Self-similar plot of the shear stress distributions of experiment A based on scales 
appropriate to a small deficit wake; symbols as in figure 5. 

each position are very similar. The maximum negative stress decays very nearly as 
x-l, as expected for a small deficit wake. 

Outside the wake created by the splitter plate, we expect some evidence of 
irrotational fluctuations appearing on the low turbulence side. Hence a region in 
which u’ cc z - ~  should be obtained with z measured from some virtual origin and in 
a direction normal to the mean flow. This appears in figure 8, in which (u’)-i is plotted 
against z ;  the linear region becomes less well-defined as we proceed downstream. The 
plots of figure 8 show that the apparent scale of the fluctuations, denoted by the slope 
or lateral extent of the linear sections, increases as x increases. The increase in scale 
is more than that due to the increasing scale of the grid turbulence and could therefore 
be associated with the increasing scale of turbulence in the wake of the splitter plate. 
This scale change, which should be roughly parabolic with x for a small deficit wake, 
results in increasingly extensive intermittent regions or increasing wrinkle amplitudes 
of the so-called ‘ superlayer’ bounding the turbulent wake vorticity. This relation 
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FIGURE 13. Self-similar plot of longitudinal turbulence intensity of experiment B based on 
scales appropriate to a small deficit wake; symbols as in figure 5. 

between turbulence scale and wrinkle amplitude has been used in a previous study 
(Gartshore 1968) in which the large-eddy equilibrium hypothesis was examined for 
several self-preserving flows. Intermittency was clearly visible in the oscilloscope 
traces of the present experiment but was not measured explicitly. The effect of 
intermittency on time-averaged measurements is examined in 9 5 .  

The measurements of turbulent velocity of figures 6 and 7 can be plotted in a 
self-similar form by the use of conventional small-deficit wake scaling, in which 
lengthscales vary as xi. Then plots of (xiu’) and ( x w )  versus (z- z,)/xi should place 
all the wake data on a single curve in each case, where the virtual origin is a t  zo. The 
turbulence intensity and shear stress data a t  the three downstream stations ( x  = 0.38, 
0.76 and 1.14 m) ‘collapse’ reasonably well (figures 9 and 10). 

Similar results are found for experiment B, although now the mean velocity below 
the wake has a small but significant gradient, provided by the curved screens (see 
figure 11). Values of (M/U)dU/dz are about 0.069, and become more uniform 
downstream of the plate. Intensities drop rapidly across the wake, as before. The shear 
stresses measured near the wake are plotted in figure 12 for experiment B. They are 
similar to those found for experiment A across most of the flow, showing positive and 
negative peaks associated with the wake. However, a small but important region of 
negative uw is found below the wake. This region is present in all profiles and can 
be seen to increase in extent and in magnitude (relative to the surrounding 
turbulence, which progressively decays) as x increases. Note that changes sign 
a t  about z = - 15 mm for x = 750 and 1130 mm and that the mean velocity gradient 
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FIGURE 14. Self-similar plot of the shear stress distributions of experiment B based on scales 
appropriate to a small deficit wake; symbols as in figure 5.  

decreases to zero a t  z = - 12 to - 16 mm for the same streamwise locations. We shall 
discuss this interesting effect later. 

Wake scaling again provides a reasonable collapse for the data, as shown in figures 
13 and 14, although there are important departures from self-similarity for the region 
below the wake in figure 14. These will be discussed later. 

The data measured in this experiment cannot be compared directly with the 
theoretical results of $ 2  until some account has been taken of the intermittency. This 
effect is considered in $5 .  

5. The effects of intermittency 
The effect of intermittency on time-averaged measurements made without using 

conditional sampling is to blur any rapid changes which may occur across the 
superlayer, and to average values measured inside and outside the boundary between 
the turbulent and irrotational motions. This effect can be described by first 
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FIGURE 15. Sketch identifying symbols used in discussion of intermittency effects: = = = = , 
instantaneous front or 'superlayer'; , mean front position. 

considering an interface between the two types of flow, which is located a t  z = zf as 
sketched in figure 15. Longitudinal intensities (or other time-average quantities) are 
given by 

in the turbulent region, and 

in the irrotational region, where u$ is the intensity and L, is the longitudinal integral 
scale of the turbulence well above the interface. It is assumed that the thickness 8, 
of the interface is very small compared with L ,  (Townsend 1976, p. 211). 

Now assume that the front moves such that the probability of zf lying between 
zf and zf + dz, is p(zf) dzf and that p(zf) is Gaussian, so that 

where 6 = (zfo-zf)/Lf, and Lf is a measure of the wrinkle amplitude of the front, 
actually d 2  times the standard deviation of the front from its mean position, which 
is denoted by zfo. 

The total contribution to 2 at a position z is then 

with z1 = (zf -z)/L,. The first term represents the contribution to u2 from inside the 
turbulent region, and the second term that from the irrotational region. The final 
distribution of u" (z )  is continuous even if f,(O) + f 2 ( 0 ) ,  that is even if there is a 
discontinuity in 2 across the original assumed plane front. The integrals of (21) can 
be expressed conveniently as 
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a = L,/L,, 

zfo-zf -- - 
Lo3 

= ga. 

Suitable functions fl&l) and f2(zl) are now substituted into the integrals of (4) to 
provide predictions of u2 and, in an entirely parallel manner, a. The analysis of $2, 
case (i) gives the functionf2(zl) for z > &/L,  outside the thin 'super' layer whose 
thickness can be ignored on the scale of L ,  ; the more restrictive results of case (ii) 
demonstrate how the smooth transition in occurs across the interface and suggests 
values off2(zl) likely for small strain ratios in the thin layer lzll 4 1. For present 
predictions it is also necessary to have values offl(zl) for all z1 < 0. These will be 
established by the wake flow adjacent to the shear region in the experimental case 
here so that, far from the interface, we may assume G/uk 2 1 and m / u &  2 +0.4. 
The latter is typical of turbulence near the point of maximum shear in the lower half 
of the wake. For comparison with experiments the detailed distribution very near 
the interface is probably unimportant and the following simple values forfl(z,) have 
been used for all z1 < 0: 

fl(zl) = 1 

fl(zl) = 0.4 

for the longitudinal turbulence 2, 
for the turbulent correlation m. 

In  addition the values off,(zl) calculated in $2, case (i), have also been used for z1 > 0. 
The assumed distributions of f ( x l )  are therefore discontinuous at the interface, an 
approximation which is strictly incorrect as pointed out in $2, case (ii), but one which 
is not likely to affect the resulting trends significantly. Takingf,(z,) as constant, the 
first integral of (22) can be expressed as a simple error function. 

Values of L,/L,, denoted here by a, can be estimated from previous measurements 
of intermittency in turbulent wakes (Gartshore 1966); they are found to be about 
0.8, and values of 0.6, 0.8 and 1 .O have been used in the calculations to demonstrate 
the sensitivity of the resulting distributions to the size of this ratio. 

The integrations described by (22), used with the computed results of figures 
3 (a ,  b ) ,  are plotted in figures 16 and 17 for 2 and UW respectively. Note that the sign 
of the shear stress UW is different on the two sides of the front, positive for z1 < 0 
(in the turbulent region) and negative or zero for z1 > 0 (in the irrotational region) 
depending on the strain. Various overall strain ratios T are included in the plots of 
figures 16 and 17,  including T = 0 and several values of a are used in the figures as 
already mentioned. 

For the cross-stream intensity w2, the analysis of $2 shows that there is no effect 
of strain and that this intensity is given for all T by the expression 

before considering intermittency. Because u"/uk a t  T = 0 is exactly one-half of this, 
the final distribution of G / u L  for all T is similar to that for u'/u& for T = 0, shown 
in figure 16 and including the effect of intermittency. 

The result of Phillips (1955) and others, that 2 cc ( x -  z , ) - ~  is valid asymptotically 
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-2 

T = 2  

0.8 

FIGURE 16. Calculated distributions of longitudinal fluctuation energy 
including the effect of intermittency. 

for T = 0, even after intermittency has been included. This is illustrated in figure 18, 
where the results of the integration (taking a = 1 for simplicity) 

have been plotted as (u"/u",+ versus El. The region in which (G)-i is proportional 
to the distance from the average position of the turbulence front is clearly evident 
at large &. Small intensities of turbulence on the low turbulence side, which we might 
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FIGURE 17. Calculated distributions of including effect of intermittency. 

call freestream turbulence in this context, have a strong effect on this kind of plot, 
typically dominating the distribution before the theoretical asymptotic zP4 region is 
obtained. This is illustrated in figure 18 as well, where a freestream intensity uf one 
tenth of the turbulent intensity u’, has been added. This curve rapidly approaches 
the value ( 2 / u 2  )-i, or d i 0  in this case, as (zfo - z ) /L ,  increases. A rather extensive 
region in whichm2 is approximately proportional to 2-O appears in this curve, and 
it occurs a t  smaller values of zfo-z than in the case for which 2 = 0. Obviously 
various relative levels of freestream turbulence would move this region, its slope and 
its extent, giving an impression of changing turbulence scale. This effect of changing 
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FIGURE 18. Calculated longitudinal fluctuation energy including effects of intermittency and 
freestream turbulence plotted to examine Phillips' hypothesis. 

relative freestream intensity, is probably masking the actual changes in turbulence 
scale in the present data plot of figure 8, already mentioned. The curve of figure 18, 
which includes freestream turbulence, is obtained from 

where the first integral on the right-hand side is equal to the intermittency factor 
y ,  and is also plotted in figure 18. It is interesting to note that the asymptotic 2-4 

region appears in the case without freestream turbulence only when the intermittency 
has dropped to essentially zero whereas the approximate z - ~  region which can be 
drawn when freestream turbulence is added appears where y is as large as 0.2. 

It must be emphasized that the results of figure 18 have been calculated by 
assuming that the probability distribution of the displacement of front is Gaussian, 
and that the wrinkle amplitude in the front L, is equal to the longitudinal turbulence 
scale L,. Both assumptions influence the shapes of calculated curves in figure 18 and 
are used here for simplicity and illustration. 

6. Discussion of results 
The analysis presented in $2, and the subsequent integration for the effects of 

intermittency in $5 ,  are based on some simplifying assumptions: the use of linear 
theory for f 2  ; the choice of ideal, constant values for UW and 2 inside the turbulent 
front ; and the neglect of the effects of curvature of the turbulent front. Qualitatively, 
the experimental results of figure 14 agree with the predictions of figure 17, both 
showing regions of negative UW at small z for T > 0. The experimental strain ratio 
( x / U )  dU/dz is about 1.4 at the farthest downstream station (where x / M  x 20), and 
is therefore in the range shown for the comparable quantity T in figure 17. 

For a more-detailed comparison between prediction and theory, the scales L,  and 
u2 must be chosen appropriately for this experiment. As a first step, the velocity scale 
u& is here taken to be the value of 2 a t  large z where the measured intensity is 
essentially independent of z. The lengthscale L, is less obvious. The shear stress 



328 I .  S .  Gartshore, P. A .  Durbin and J .  C.  R. Hunt 

FIGURE 19. 
comparison 

plotted in figure 14 shows a wake-like character, with UW which is negative in the 
upper part of the wake (positive z )  and positive in the lower part (negative z). 

Assuming the scale of the lower part (which is less than that of the upper part) 
is the same as that of a simple wake, then on the basis of previous wake measurements 
the integral scale is given by L / ( d Z ) ~  x 0.05. Taking this as L, for the present 
experiment, the measurements of UW in the important region where UW is negative 
can be resealed into the theoretical non-dimensional form of figure 17. The results 
are shown in figure 19. 

The maximum magnitude of the observed non-dimensional shear stress at the 
farthest downstream station is about 0.04 from figure 19. The predicted maximum 
magnitude (from figure 17) agrees with this experimental value if we choose a x 0.7 
for T = 2. In the experiment we have estimated a to be 0.8 and T to be 1.4, the first 
of these estimates being based on measurements of intermittency in simple turbulent 
wakes (Gartshore 1966). Thus the actual values of a and Tare close to those required 
in the predictions to provide the observed maximum in the shear stress. 

At the farthest downstream station ( x / M  x 20) the extent of the negative uw region 
is seen to be about 2L, from the data of figure 19. The extent of the negative-am 
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region in figure 17 reaches about 1.6L- for T = 2 and a = 0.7,  decreasing slightly 
for higher values of a or lower values of T .  An important result of the theory, clearly 
present in the experimental observations, is that there can be an abrupt change of 
sign of Reynolds shear stress a t  a plane where the velocity gradient is non-zero. The 
prediction of small negative Reynolds stress induced in the uniform flow near this 
plane, while not observed explicitly in the present experiments, is not inconsistent 
with the measured results. 

I n  general then, the magnitude and extent of the negative-uw region are similar 
in the analysis and in the measurements. Closer comparisons are not justified in the 
present case and better agreement could not be expected considering the assumptions 
necessary to make the comparison. 

The chief conclusion from the present study is that irrotational fluctuations can 
create turbulent stresses in a region of mean-velocity gradients and that, for low strain 
ratios, this effect can be estimated using linear rapid-distortion theory. The effects 
are small in the longitudinal intensity and are most easily detected in the growth from 
zero of turbulent shear stress in the region affected. The effects of intermittency, 
inevitably present near the free boundaries of turbulent regions, are important in 
comparing predicted and measured results and further work, possibly involving 
higher strain ratios, should incorporate conditional sampling techniques to  identify 
more clearly the processes inside and outside the fluctuating vorticity boundaries. 

The experimental work reported here was completed while the first author was a 
visitor at DAMTP in Cambridge. Thanks are due to  Mr David Cheesely for his help 
with construction of the apparatus and to  others in DAMTP for this arrangement. 
Financial support for the work was received from the Killam Foundation and from 
an NSERC (Canada) grant. We are grateful to the referees for their comments. 
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